Monatshefte für Chemie 122, 959–966 (1991)

Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1991 Printed in Austria

Zur Synthese und Struktur von 8-Nitro-imidazo [1,2-a]pyridinen

Harry Schäfer*, Margit Gruner, Gisbert Großmann und Karl Gewald

Sektion Chemie, Technische Universität Dresden, D-O-8027 Dresden, Bundesrepublik Deutschland

On the Synthesis and Structure of 8-Nitro-imidazo[1,2-a]pyridines

Summary. The title compounds were synthesized by reaction of nitroketene aminals with β -chlorovinylcarbonyl compounds. The chloromethylene malononitriles 1 react with nitromethylenimidazolin (2 a) and -benzimidazoles 2 b to yield the 8-nitro-2,3-dihydroimidazo[1,2-a]pyridines 3 and the 4nitropyrido[1,2-a]-benzimidazoles 6, both containing an amino group. Analogously, from the special 3-chloro-2-propeniminium salt 7 and 2 a the imidazopyridine derivative 9 was formed. The 3-aryl-3chloro-2-propeniminium salts 10 were converted into the nitro-dihydroimidazo[1,2-a]pyridines 11 and the pyrido[1,2-a]benzimidazole 12 containing the aryl group by reaction with 2 a and 2 b, respectively. The structures were investigated by 2-dimensional ¹H/¹³C-NMR-spectroscopy.

Keywords. Chlormethylene malononitriles; Nitromethylenimidazolines; 3-Chloro-2-propeniminium salts; 8-Nitro-imidazo[1,2 a]-pyridines; 4-Nitro-pyrido[1,2-a]benzimidazoles; ${}^{1}H/{}^{1}H$ -, ${}^{1}H/{}^{13}C$ -2D-NMR.

Einleitung

Nitroketenaminale vom Typ 2 sind als spezielle Enamine schon wiederholt mit geeigneten Reaktionspartnern [1, 2], darunter auch mit β -Dicarbonylverbindungen [3] und Ethoxymethylencyanessigsäurederivaten [4], zu Nitroheterocyclen kondensiert worden. Uns interessierte deshalb das Reaktionsverhalten von 2 gegenüber β -Chlor- α -cyan-acrylnitrilen und 3-Chlor-2-propeniminiumsalzen.

Ergebnisse und Diskussion

Erwartungsgemäß lassen sich die genannten Alkoxymethylencyanessigsäurederivate durch die Chlormethylenmalononitrile 1 a [5] und 1 b [6] ersetzen; aus 2-Nitromethylenimidazolin 2 a [7] erhält man so 5-Amino-8-nitro-2,3-dihydro-imidazo[1,2-a]pyridine 3. Wird der Primärangriff von 1 nicht am C-, sondern am N-Atom des Nitroenamins 2 formuliert, dann sind die isomeren Produkte 4 zu erwarten. Die Reaktion steht in Analogie zur Umsetzung von 2 a mit Ethoxymethylencyanessigesterderivaten, bei der sowohl 3 a wie auch der entsprechende Ester 5 erhalten und bereits beschrieben wurde [4]. Die Strukturen formulierten wir seinerzeit, ohne die entsprechenden Isomere vom Typ 4 sicher ausschließen zu können.

	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8
3a	151.6 br	88.8 br	139.14 s	112.2 br	151.06 m	44.90 (t)	44.0 br	116.08 d
3 b	152.5 br	90.1 br	152.1 br	113.4 br	150.9 br	45.30 (t)	44.5 br	115.83 s
5 ^b	152.80 d	98.8 br	137.20 s	113.5 s	150.47 m	44.79 (t)	46.02 br	164.52 dt
6 a	152.74 d	83.7 br	136.07 s	116.5 br	141.52 d	127.93 t	136.0 br	115.96 d
6 b	151.58 s	77.5 br	144.9 br	117.9 br	142.14 s	128.24 t	133.6 br	115.78 s
9	185.90 s	90.94 (d) t	154.44 d	108.06 m	151.62 m	45.71 (t)	44.02 (t)	154.18 s
11 a	139.06 (d)	101.49 (d)	143.15 m	133.47 d	150.21 m	52.74 (t)	49.82 (t)	_
11 b°	138.85 (d)	101.55 (d)	142.92 m	133.40 d	150.21 m	52.71 (t)	49.61 (t)	_
11 c	140.55 (d)	101.86 (d)	143.45 m	132.71 d	149.74 m	52.35 (t)	49.80 (t)	_
12	129.18 (d)	110.96 (d)	134.12 m	135.89 d	140.48 d	128.77 m	144.42 m	
	C-9	C-10	C-11	C-12	C-13	C-14	C-15	C-16
3 b	136.19 t	126.60 t	128.21 d	128.43 t	_	_	_	_
6 a	_	_		-	115.2 br	123.78 d	126.58 d	116.5 br
6 b	133.6 br	127.62 t	128.65 d	129.52 t	118.2 br	122.89 m	126.69 d	115.4 br
11 a	134.45 dt	126.61 t	129.02 d	129.69 t				
11 b	131.47 dt	126.57 d	129.61 m	139.58 m	_			
11 c	141.43 dt	128.33 d	124.07 d	147.96 t	_	_	_	_
12 ^d	130.79 m	127.51 d	129.68 m	139.84 m	112.30 d	122.01 d	126.45 d	119.32 d

Tabelle 1. ¹³C-NMR-chemische Verschiebungen von 3a, b, 5, 6a, b, 9, 11a-c und 12 (in ppm, Lösungsmittel: *DMSO-d*₆) und Multiplizitäten^a der protonengekoppelten Signale

^a Angabe der Multiplizitäten infolge ¹³C-¹H-Kopplung über drei Bindungen ohne Klammern, über zwei Bindungen in Klammern

^b OCH₂CH₃: 60.30 (q), 13.98 (t)

^c CH₃: 20.81 t

^d CH₃: 20.67 t

Die eindeutige Bestätigung der Struktur 5 gelang nunmehr mit Hilfe eines longrange ¹H-¹³C-shiftkorrelierten 2D-COLOC-NMR-Spektrums. Damit war auch der Strukturbeweis der Nitrile **3 a, b** mittels deren ¹³C-NMR-Spektren möglich (s. Tab. 1).

Erwartungsgemäß reagieren 1 a, b auch mit 2-Nitromethylenbenzimidazolin 2 b [3] unter Bildung der 1-Amino-4-nitro-pyrido[1,2-a]benzimidazole 6 a [4] und 6 b.

Dicarbonylverbindungen können bekanntlich durch die wesentlich reaktiveren 3-Chlor-2-propeniminiumsalze [8] ersetzt werden. Das in seiner Struktur der Verbindung 1 sehr ähnliche N,N-Dimethyl-5-dimethylamino-3-chlor-2-cyan-4-azapenta-2,4-dienimmonium-perchlorat 7 [9] zeigt das analoge Reaktionsverhalten. Unter angenommener primärer C – C-Verknüpfung bildet sich bei der Umsetzung mit 2a das 7-Amino-8-nitro-2,3-dihydro-imidazo[1,2-a]pyridin-6-carboxamid 9. Dessen freie Aminogruppe entsteht zwangsläufig durch die Hydrolyse des Intermediates 8 während der Aufarbeitung. Die Struktur von 9 und der Ausschluß der dazu isomeren Verbindung läßt sich zufriedenstellend aus dem ¹³C-NMR-Spektrum von 9 (s. Tab. 1) ableiten.

Bei der Umsetzung von 3-Aryl-3-chlor-2-propeniminiumsalzen 10 [8] mit 2a entstehen die 7-Aryl-8-nitro-2,3-dihydro-imidazo[1,2-a]pyridine 11 und mit 2b das

4-Nitro-3-p-tolyl-pyrido[1,2-a]-benzimidazol 12. (Da 10 als Perchlorat eingesetzt wird, fallen auch 11 und 12 als Perchlorate an, aus denen die Basen leicht in Freiheit gesetzt werden können.)

An Stelle der Struktur 11 war auch hier deren isomere Struktur 13 denkbar, vor allem dann, wenn man die Umsetzung mit der Bildung von 3 vergleicht. Eine Unterscheidung der jeweils zwei möglichen Strukturen zugunsten von 11 und 12 war mit chemischen Mitteln nicht möglich. Sie konnte aber für 11 a und 12 anhand von ¹H-¹H-shiftkorrelierten NOESY-2D-NMR-Spektren vorgenommen werden (s. Abb. 1).

Für den Nachweis der Strukturen **3** und **6** gingen wir von den ¹³C-NMR-Spektren von **5** aus. Im protonengekoppelten "gated decoupling"-Spektrum einer Lösung von **5** in *DMSO-d*₆ können die Signale der Ringatome C-1, C-3 und C-5 (s. Formelschema) leicht durch ihre charakteristische Lage und Linienaufspaltung zugeordnet werden. Wegen des langsamen Protonenaustausches an der NH₂-Gruppe mit dem sp³-hybridisierten Ringstickstoff finden wir für die C-2- und C-4-Signale zwei verbreiterte Linien bei 98.8 und 113.5 ppm, die in einer *DAc/DMSO* (2:1)-Lösung von **5** zu einem scharfen Singulett bei 99.21 ppm und zu einem Dublett

mit einer Kopplungskonstante von 3.7 Hz bei 118.64 ppm aufgelöst werden. In einem long-range-¹H-¹³C-2D-COLOC-Spektrum sind Kreuzpeaks zwischen H-3 und C-1, C-4, C-5 sowie C-8 sichtbar und außerdem zwischen H-6 und C-5. Durch die Kopplung zwischen H-3 und C-4 wird Struktur 5 bestätigt, da im Falle von 4 eine CH-Gruppe über vier Bindungen zu C-4 keine merkliche Kopplung ergeben sollte. Die ¹³C-NMR-Spektren von **3a, b** und **6a, b** weisen im Vergleich zu **5** weitgehend analoge ¹³C-chemische Verschiebungen ihrer Ringatome C-1 bis C-5 auf

Abb. 1. ¹H-¹H-shiftkorreliertes 2 D-NMR-Spektrum von 12; Pulsprogramm: NOESY

8-Nitro-imidazo[1,2-a]pyridine

Abb. 2. ¹H-¹³C-shiftkorreliertes 2D-NMR-Spektrum von 12; Pulsprogramm: XHCORD

Abb. 3. Long-range ¹H-¹³C-shiftkorreliertes 2 D-NMR-Spektrum von 12; Pulsprogramm: COLOC

(s. Tab. 1). Die erhebliche Verbreiterung der C-2- und C-4-Signale läßt sich wiederum durch Zugabe von DAc zu den Meßlösungen beheben.

Das protonengekoppelte ¹³C-NMR-Spektrum von 9 zeigt entsprechend der veränderten Stellung des protonentragenden C-Atomes im Ring deutliche Unterschiede zu den Spektren von 3a, 5 und 6a (s. Tab. 1). Neben der etwas ungewöhnlichen Lage des C-1-Signales bei 185.90 ppm (im Vergleich zu 136.07, 137.20 und 139.14 ppm für die C-3-Atome von 6a, 5 und 3a) sind vor allem die Aufspaltungsbilder für die C-2- und C-4-Linien bedeutsam. In einer *DAc/DMSO* (2:1)- Lösung von 9 finden wir bei 91.94 ppm ein Dublett von 22.5 Hz, hervorgegangen aus der ${}^{13}C-2/{}^{1}H-1$ -Kopplung, sowie bei 109.23 ppm ein scharfes C-4-Singulett, so daß nur die vorgeschlagene Struktur 9 in Betracht kommen kann.

Für 11 a und 12 wurde aus COSY-2D-NMR-Spektren die Zuordnung der Protonensignale bestimmt. Aus den in den NOESY-2D-Spektren auftretenden Kreuzpeaks zwischen H-1/H-7 bei 11 a bzw. zwischen H-1/H-13 bei 12 (s. Abb. 1) wird die räumliche Nähe dieser Protonen sichtbar. Somit können die zu 11 und 12 isomeren Strukturen 13 ausgeschlossen werden. Die Zuordnung der ¹³C-NMR-Linien in Tab. 1 ergibt sich anhand der ¹ J_{CH} shiftkorrelierten 2D-Spektren für die direkt an Protonen gebundenen ¹³C-Kerne sowie aus den long-range-Korrelationen der COLOC-2D-Spektren, die in den Abb. 2 und 3 am Beispiel von 12 dargestellt sind.

Experimenteller Teil

Die NMR-Spektren wurden mit dem Spektrometer MSL 300 der Fa. Bruker gemessen. ¹³C-Meßfrequenz: 75.475 MHz, digitale Auflösung 0.01 ppm, Lösungsmittel *DMSO-d*₆ [δ (¹³C) = 39.56 ppm gegen *TMS*]. Für die COSY- und NOESY-2D-Spektren wurden jeweils 256 1 D-Spektren mit 1 K Datenpunkten aufgenommen (Punktabstand 4.5 Hz in beiden Bereichen). Mischzeit bei NOESY: 1 s. Die ¹H-¹³C-shiftkorrelierten Spektren wurden so angesetzt, daß im F 2-Bereich ein Punktabstand von 8 Hz und im F 1-Bereich einer von 5 Hz resultierte. Für die über long-range-Kopplungen korrelierten 2 D-Spektren [10] (COLOC) betrug das t₁-Inkrement 321 µs und die Δ 2-Wartezeit 28 ms.

5-Amino-6-cyan-8-nitro-2,3-dihydro-imidazo[1,2-a]pyridin (3 a)

2.6 g (0.02 mol) 2-Nitromethylenimidazolidin (2 a) [7] werden in 20 ml abs. *DMF* gelöst. Unter Rühren tropft man 2.4 g (0.02 mol) β -Chlor- α -cyan-acrylnitril (1 a) [5] und danach 4 ml Triethylamin zu. Das Reaktionsgemisch wird 75 min auf 100 °C erwärmt. Nach dem Erkalten gibt man 100 ml Wasser hinzu, saugt ab und wäscht den Niederschlag mit Wasser. Ausb. 3.5 g (85%), Schmp. ab 300 °C Zers. (aus *DMF*) (vgl. [4]).

5-Amino-6-cyan-8-nitro-7-phenyl-2,3-dihydroimidazo[1,2-a]pyridin (3b)

In 30 ml abs. Ethanol werden 2.6 g (0.02 mol) **2 a** gelöst, mit 3.8 g (0.02 mol) β -Chlor- α -cyan-zimtsäurenitril (**1 b**) [6] versetzt und 15 min zum Sieden erhitzt. Nach dem Erkalten fügt man eine Lösung von 1 g Natrium, gelöst in 30 ml abs. Ethanol, hinzu und erhitzt 2–3 min zum Sieden. Wenn sich das Reaktionsgemisch abgekühlt hat, wird mit 50 ml Wasser verdünnt, mit verd. HCl angesäuert und angerieben. Nach längerem Stehen wird der Niederschlag abgesaugt, mit Wasser gewaschen, mit verd. Ammoniak verrieben und erneut mit Wasser gewaschen. Ausb. 2.8 g (52%), Schmp. 263–267 °C (aus Methanol).

IR: 3 360 s, 3 320 s NH, 2 215 s cm⁻¹ CN. UV (Ethanol): λ_{max} 270 s nm (lg ε 3.76), 332 s (3.91), 387 (4.27). C₁₄H₁₁N₅O₂ (281.2). Ber. C 59.79, H 3.94, N 24.90; gef. C 59.69, H 3.88, N 24.70.

1-Amino-2-cyan-4-nitro-pyrido[1,2-a]benzimidazol (6 a)

3.5 g (0.02 mol) 2-Nitromethylbenzimidazol (2b) [3] werden, wie für 3a beschrieben, mit 2.4 g (0.02 mol) 1a umgesetzt und aufgearbeitet. Ausb. 2.6 g (52%), Schmp. ab 300 °C Zers. (aus Eisessig) (vgl. [4]).

964

1-Amino-2-cyan-4-nitro-3-phenyl-pyrido[1,2-a]benzimidazol (6b)

3.5 g (0.02 mol) 2b werden mit 3.8 g (0.02 mol) 1b, wie für 3b beschrieben wurde, umgesetzt und aufgearbeitet. Ausb. 3 g (45%), Schmp. $266 - 268 \degree$ C (aus Dioxan).

IR: 3 460 s, 3 370 s, 3 310 NH, 2 210 cm⁻¹ CN. UV (DMF): λ_{max} 277 nm, (1 g ϵ 4.37), 360 (4.05), 435 (3.94). C₁₈H₁₁N₅O₂ (329.3). Ber. C 65.65, H 3.37, N 21.27; gef. C 65.58, H 3.38, N 21.15.

7-Amino-8-nitro-2,3-dihydro-imidazo[1,2-a]pyridin-6-carboxamidhydrochlorid (9)

In 30 ml abs. Ethanol werden 1.3 g (0.01 mol) **2 a** und 3.1 g (0.01 mol) N,N-Dimethyl-5-dimethylamino-3-chlor-2-cyan-4-aza-penta-2,4-dien-immoniumperchlorat 7 [9] gelöst und 10 min zum Sieden erhitzt. Das in der Siedehitze ausgefallene Öl erstarrt beim Abkühlen. Vom Lösungsmittel wird dekantiert und der Rückstand in 20 ml Methanol und 20 ml 10% iger Natronlauge 10 min zum Sieden erhitzt. Nach dem Erkalten saugt man den Niederschlag ab. Dieser wird mit 15 ml konz. HCl kurz aufgekocht. Nach dem Erkalten setzt man 30 ml Ethanol zu, reibt an und saugt nach längerem Stehen ab. Ausb. 0.9 g (35%), Schmp. 360 °C (aus Ethanol/Wasser). C₈H₉N₅O₃ · HCl (259.7). Ber. C 36.99, H 3.88, N 26.97, Cl 13.65; gef. C 36.99, H 3.70, N 25.97, Cl 14.34. Hydroperchlorat: Schmp. 302 – 305 °C (aus Ethanol/Wasser).

8-Nitro-7-phenyl-2,3-dihydro-imidazo[1,2-a]pyridin (11 a)

3.9 g (0.03 mol) 2 a und 8.7 g (0.03 mol) 3-Chlor-3-phenyl-prop-2-en-1-yliden-dimethyliminium-perchlorat (10 a) [8] werden in 100 ml abs. Ethanol suspendiert und 15 min zum Sieden erhitzt. Nach dem Erkalten wird das Hydroperchlorat abgesaugt und mit Ethanol gewaschen. Ausb. 8.5 g (83%), Schmp. $191 - 193 \,^{\circ}$ C (aus Methanol). Das Hydroperchlorat wird in 40 ml Ethanol und 70 ml halbkonz. wäßrigen Ammoniak verrührt. Dabei löst es sich auf, und beim Anreiben fällt die freie Verbindung 11 a aus. Ausb. 4.5 g (62% bezogen auf 2 a), Schmp. $194 - 197 \,^{\circ}$ C (aus Essigsäureethylester).

UV (Ethanol): λ_{max} 228 nm (lg ϵ 4.23), 256 s (4.10), 367 (3.83). $C_{13}H_{11}N_3O_2$ (242.2). Ber. C. 64.67, H 4.58, N 17.35; gef. C 64.83, H 4.73, N 17.42.

8-Nitro-7-p-tolyl-2,3-dihydro-imidazo[1,2-a]pyridin (11b)

Wie für **11 a** beschrieben, werden 3.9 g (0.03 mol) **2 a** mit 11 g (0.03 mol) 3-Chlor-3-*p*-tolyl-prop-2-en-1-yliden-dimethyliminiumperchlorat (**10 b**) [8] umgesetzt und aufgearbeitet. Ausb. 3.7 g (47%), Schmp. 202 - 204 °C (aus Essigsäureethylester).

UV (Ethanol): λ_{max} 241 nm (4.23), 256 s (4.20), 369 (3.75). $C_{14}H_{13}N_3O_2$ (255.3). Ber. C 65.86, H 5.13, N 16.46; gef. C 65.87, H 5.28, N 16.28.

8-Nitro-7-p-nitrophenyl-2,3-dihydro-imidazo[1,2-a]pyridin (11c)

Analog zur Vorschrift für **11 a** werden 2.6 g (0.02 mol) **2 a** mit 6.8 g (0.02 mol) 3-Chlor-3-p-nitrophenylprop-2-en-1-yliden-dimethyliminiumperchlorat (**10 c**) [8] umgesetzt und aufgearbeitet. Ausb. 4 g (69%), Schmp. 208 – 209 °C (Rohprodukt).

UV (DMF): λ_{max} 364 nm (lg ε 3.88). C₁₃H₁₀N₄O₄ (286.2). Ber. C 54.55, H 3.53, N 19.58; gef. C 53.85, H 3.97, N 19.06.

4-Nitro-3-p-tolyl-pyrido[1,2-a]benzimidazol (12)

1.8 g (0.01 mol) **2b** und 3.1 g (0.01 mol) **10 b** werden in 30 ml abs. Ethanol 10 min zum Sieden erhitzt. Der nach dem Erkalten und Anreiben erhaltene Niederschlag wird abgesaugt und in einem Gemisch aus 45 ml Methanol und 15 ml halbkonz. Ammoniak zum Sieden erhitzt. Nach dem Erkalten wird abgesaugt, mit Methanol und Wasser gewaschen. Ausb. 1.4 g (48%), Schmp. 218–221 °C (aus Acetonitril).

UV (Ethanol): λ_{max} 252 nm (lg ϵ 4.50), 266 s (4.38), 322 (4.10), 370 s (3.72). $C_{18}H_{13}N_3O_2$ (303.2). Ber. C 71.28, H 4.32, N 13.85; gef. C 70.87, H 4.52, N 13.94.

Literatur

- [1] Tominaga Y., Matsuda Y. (1985) J. Heterocycl. Chem. 22: 973
- [2] Rajappa S. (1981) Tetrahedron 37: 1453
- [3] Schäfer H., Gewald K. (1976) Z. Chem. 16: 272
- [4] Schäfer H., Gewald K. (1978) Z. Chem. 18: 335
- [5] Josey A. D., Dickinson C. L., Dewhirst A. C., McKusik B. C. (1967) J. Org. Chem. 32: 1941
- [6] Schollberg K., Schäfer H., Gewald K. (1983) J. Prakt. Chem. 325: 876
- [7] Gompper R., Schaefer H. (1967) Chem. Ber. 100: 591
- [8] Liebscher J., Hartmann H. (1979) Synthesis: 241
- [9] Jutz C., Müller W. (1966) Angew. Chem. 78: 1059
- [10] Kessler H., Griesinger C., Zerbock J., Loosh H. R. (1984) J. Magn. Res. 57: 331

Eingegangen 10. Januar 1991. Angenommen 28. Februar 1991

966